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[1] Effects of multiple scattering on reflectivity are studied for millimeter wavelength
weather radars. A time-independent vector theory, including up to second-order scattering,
is derived for a single layer of hydrometeors of a uniform density and a uniform diameter.
In this theory, spherical waves with a Gaussian antenna pattern are used to calculate ladder
and cross terms in the analytical scattering theory. The former terms represent the
conventional multiple scattering, while the latter terms cause backscattering enhancement
in both the copolarized and cross-polarized components. As the optical thickness of the
hydrometeor layer increases, the differences from the conventional plane wave theory
become more significant, and essentially, the reflectivity of multiple scattering depends on
the ratio of mean free path to radar footprint radius. These results must be taken into
account when analyzing radar reflectivity for use in remote sensing.
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1. Introduction

[2] Millimeter wavelength weather radars have been
extensively used to increase accuracy of measuring
hydrometeor characteristics (e.g., raindrops, liquid cloud
particles). In this frequency regime, multiple-scattering
effects become important so as to be taken into account
when using radar reflective intensity in retrieval algo-
rithms of hydrometeor density. The occurrence of multiple
scatterings was confirmed in 35 GHz radar measurements
by the presence of depolarized signals reflected from
spherical raindrops [Ito et al., 1995; Iguchi et al., 1992].
Ito et al. [1995] proposed an approximate analytical
formula to calculate copolarized and depolarized intensi-
ties caused by second-order scattering in a single layer
of hydrometeors for plane wave incidence. Since this
formula is derived from the expansion of generalized
spherical harmonics based on the time-dependent radia-
tive transfer theory [Oguchi, 1980], it is particularly useful
to the analysis with a short pulsed weather radar in remote
sensing.
[3] From the early 1970s to the early 1990s, multiple

scattering in randomly distributed particles was inten-

sively studied through the analytical method of electro-
magnetic wave [de Wolf, 1971; Golubentsev, 1984; Tsang
and Ishimaru, 1985; Kravtsov and Saichev, 1982]. In the
course of study, two main contributions of multiple
scattering to reflective intensity were revealed; one is
the conventional multiple scattering called ladder term,
and the other called cross term, is the contribution from
interference of two ray paths mutually satisfying the
condition of time reversal paths, as will be addressed
in this paper. The contribution of a cross term is
negligible to that of the corresponding ladder term unless
the transmitting and receiving directions satisfy the
nearly backscattering condition. Once this condition is
satisfied, as is always the case of ground- based mono-
static radars, the cross term becomes comparable to the
ladder term, resulting in backscattering enhancement.
However, for the case of spaceborne radars, we must
not always expect the backscattering enhancement be-
cause the platform motion at a high speed introduces a
significant displacement, breaking the right backscatter-
ing condition. If the scattering angle is far from back-
scattering, it is sufficient to consider only the ladder
term. As Barbanenkov et al. [1991] and Ishimaru [1991]
reviewed, the backscattering enhancement is a universal
wave phenomenon observed whenever the multiple scat-
tering is substantial. Therefore it is not appropriate to use
the second-order scattering formula of Ito et al. [1995]
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for monostatic radars without evaluating the effect of
backscattering enhancement.
[4] An application of backscattering enhancement to

weather radars was studied for turbulent media by Lure
et al. [1989]. However, for millimeter wavelength radars,
de Wolf et al. [2000] and Kobayashi [2002] showed that
the incoherent scattering from cloud particles carried by
the turbulent air cannot be observed except for extreme
case. Hence in this paper, only the scattering from each
particle, namely delta function–like singular incoherent
component will be considered. For this scattering com-
ponent, backscattering enhancement was studied as a
scalar theory [Ishimaru and Tsang, 1988; Akkermans et
al., 1986; Barbanenkov and Ozrin, 1988; Golubentsev,
1984; Tsang and Ishimaru, 1984, 1985] and as a vector
theory [Mandt et al., 1990; Mandt and Tsang, 1992;
Akkermans et al., 1988; Stephen and Cwilich, 1986;
Kuzmin et al., 1992; Mishchenko, 1991, 1992]. Numer-
ical simulations for the vector theory were found in
references [Oguchi and Ihara, 2005; van Albada and
Lagendijk, 1987]. Among these vector theories, the
perturbation theories [Mandt et al., 1990; Mandt and
Tsang, 1992; Kuzmin et al., 1992; Mishchenko, 1991,
1992] can be considered more appropriate for hydro-
meteors because of its small volume fraction of scatterers
of order of 10�5, comparing with the diffusion theories
[Akkermans et al., 1988; Stephen and Cwilich, 1986].
Especially, two formalisms of Mishchenko [1991, 1992]
and Mandt et al. [1990] are advantageous so as to have
the explicit forms of scattering amplitude matrix in
position space representation. The former formalism
includes the contributions of ladder and cross terms of
all orders, and seems to suit for numerical simulation, but
not for analytical expression. The latter, on the other
hand, includes at most the second-order terms, but it can
give an analytically simple form for a system of a finite
layer thickness. Furthermore the second-order theory can
be considered to be sufficient for a dilute system such as
hydrometeors as mentioned in references [Ito et al.,
1995; Iguchi et al., 1992].
[5] In all the previous theoretical works, a plane wave

is incident to a layer of randomly distributed particles,
and the reflected wave is collected by a receiver at
infinite range. On the other hand, in remote sensing, a
spherical wave with a finite beam width, usually approx-
imated as a Gaussian antenna pattern within the antenna
mainlobe, is incident, and the reflected wave is received
by an antenna at a finite range. For the single scattering,
the plane wave theory can be applied to the spherical
wave of a finite beam width with a slight correction on
range and gain, as will be also shown in this paper. On
the other hand, for multiple scattering, it is not appro-
priate to adopt the plane wave theory as it is, because a
finite footprint radius can be considered to give a smaller
reflectivity than the plane wave theory predicts, espe-

cially when the footprint radius is smaller than the mean
free path of an illuminated body. The mean free path in a
layer of hydrometeors can reach 1000–2000 m for
millimeter wavelength wave, while a typical footprint
radius is on order of hundreds meters for airborne
applications, and a few kilometers for spaceborne cases.
In this study, a time-independent multiple-scattering
theory is formulated for a spherical wave along with a
Gaussian antenna pattern, based on the plane wave
theory of Mandt et al. [1990]. It means that the formal-
ism of this paper can be applied to the stationary process
such as CW radars (not FM-CW radars), but not to
pulsed radars except for the special case described in
section A3. To estimate amounts of the multiple scatter-
ing for pulsed radars in the general case, it is necessary to
develop time-dependent algorithms as a future work,
which are briefly discussed in section 4. Our analysis
considers only a single layer of spherical water particles
of uniform diameter and uniform number density. For
simplicity of theoretical derivation, particles are assumed
to be stationary in air throughout this paper. The limit of
this last assumption will be discussed in section 3.
[6] The main purpose of this paper is to illustrate that

reflectivity in multiple scattering for a finite beam width
is smaller than the value predicted by the plane wave
theory. The result will form the basis of a future retrieval
algorithm of hydrometeors that takes a drop size distri-
bution into consideration.

2. Formalism

[7] Ishimaru and Tsang [1988] derived a second-order
multiple-scattering theory for anisotropic scatterers
through the analytic method of electromagnetic wave
approximated in scalar. A plane wave with infinite
duration was used to lead a time-independent theory in
which the thickness ‘‘d’’ of a layer is an adjustable
parameter. Mandt et al. [1990] later expanded this scalar
theory to a vector counterpart by introducing the three-
dimensional characteristics of electromagnetic waves. In
this section, the formalism of Ishimaru-Tsang and Mandt
et al. is expanded to a spherical wave with a finite beam
width represented by a Gaussian function. To deal with
complication introduced by the finite beam width, further
simplifications of integrals will be performed for the
second-order ladder and cross terms as will be shown in
this section and section A1.

2.1. First-Order Ladder Term

[8] As briefly mentioned in section 1, all the ladder
terms are incorporated into radiative transfer theory. The
first-order ladder term, corresponding to the conventional
single scattering intensity, is depicted schematically in
Figures 1a and 1b for a radar with finite beam width. To
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illustrate the backscattering enhancement, at first a
bistatic radar is considered by assuming a small value
of scattering angle qs � 1� as shown in Figures 1a and b,
and then the formula for monostatic radar is derived by
taking the limit of qs ! 0. In Figure 1a, the point O is the
center of the footprint at the top boundary of the random
medium layer. The unit vector k̂i denotes the direction of
the incident wave along the transmitting antenna axis
TO, and the transmitting range ri is the length of TO.
When the incident spherical wave is scattered by a point
scatterer at point r0 in the medium, the field at point r0

can be represented for a large range ri � jr0j and a small
3 dB aperture angle qd � 1� in the form of

Y r0ð Þ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pt G0 =4p

p
r�1
i exp ikri½ �

� exp iKir
0½ � exp �r02?=4s

2
r

� �
Y0 ð1Þ

In equation (1), Pt, G0 and k denote the total transmitting
power, the center gain of the antenna, and the wave
number in air, respectively. r0? denotes the transverse
length of the point r0 as shown in Figure 1. The 3 dB
footprint radius sr can be defined as

s2r ¼ r2i q
2
d=2

3 ln 2 ð2Þ

The vector Y0 in equation (1) represents an initial
polarization state. The effective incident wave number Ki

in the medium can be represented, based on work by
Ishimaru and Tsang [1988]:

Ki 	 k k̂i � ik
00

izẑ ð3Þ

The incident direction k̂i can be defined with polar
coordinates as

k̂i ¼ sin qi cosjix̂þ sin qi sinjiŷþ cos qiẑ ð4Þ

in which the base vector ẑ in the Cartesian system is
taken in the zenith. The directions of x̂ and ŷ are arbitrary
in the orthogonal plane to ẑ. In equation (3), the
imaginary part k00iz is represented in the form of

k
00

iz ¼ �ke=2 cos qi ð5Þ

Note that the negative signs in equations (3) and (5) have
been chosen because of qi 	 p. The extinction rate ke in
equation (5) is defined by the Foldy-Twersky-Oguchi
formula [Oguchi, 1973; Tsang and Kong, 2001]:

ke ¼ Im 4pN0k
�1F k̂i; k̂i

� �h i
ð6Þ

in which N0 is the number density of hydrometeors. Since
F(k̂s, k̂i) denotes the scattering amplitude matrix scattered
from the directions k̂i to k̂s, F(k̂i, k̂i) in equation (6) means
the forward scattering amplitude matrix.

Figure 1. First-order ladder term. (a) Incident spherical
wave emitting from a transmitting antenna T of 3 dB
aperture angle qd. The wave scatters at r0 in a layer of
random medium of thickness d; k̂i denotes a radar
incident wave number. (b) Wave scattered at r0 reaching a
receiving antenna R of 3 dB aperture angle qd; k̂s denotes
a radar scattering wave number. (c) Diagram in which Y

denotes the incident spherical wave and G01 denotes a
scattering Green function from r0 to antenna R.
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[9] The reflected wave from the point r0 to the
receiving antenna R of a bistatic radar system is depicted
in Figure 1b. For simplicity, it is assumed that the
receiving antenna R shares its footprint center O with the
transmitting antenna T. The geometrical configuration of
a spaceborne monostatic weather radar orbiting at an
altitude of 350–400 km over the Earth surface with a
speed of 7–8 km/sec can be approximated by the bistatic
radar configuration depicted in Figure 1b, because the
antenna moves by a large amount during the round trip
time of pulse. The corresponding angle shift qs is
approximately equal to 0.0025�. In rigor, we have to note
that, for the spaceborne radar, the antenna gain at the
receiving position changes from that at the transmitting
position. However the difference in gain is generally
negligible so that the above approximation is satisfied.
For a small scattering angle qs � 1� along with the
condition for the receiving range rs(� jr0j), the Green
function of the signal received by the antenna R, located
at point r, can be approximated in the form of

�G01 r; r0ð Þ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pG0 =k2

p
r�1
s exp ikrs½ �

� exp �iKsr
0½ � exp �r02?=4s

2
r

� �
�I2 ð7Þ

in which the two dimensional identical operator/dyad is
defined with bra-ket notations in quantum mechanics as

�I2 ¼ q̂ihq̂
			 			þ ĵihĵj j ð8Þ

In equation (8), the unit vectors in the polar and azimuth
directions are represented by q̂ and ĵ respectively. The
effective scattered wave number Ks in the medium can be
defined in a similar manner to equations (3) and (5):

Ks 	 k k̂s þ ik
00

szẑ ð9Þ

with

k̂s ¼ sin qs cosjsx̂þ sin qs sinjsŷþ cos qsẑ ð10Þ

k
00

sz ¼ ke=2 cos qs ð11Þ

The scattering process in Figures 1a and 1b is
represented by the Dyson’s diagram in Figure 1c. For
completely random distributions of a uniform density N0

(i.e., no particle-particle correlation), the first-order
ladder term intensity can be represented via the diagram
of Figure 1c in the integral form:

I
1ð Þ

L ¼ 4pð Þ2N0

Z 0

�d

dz

Z
dr0? Yy r0ð ÞFy k̂s; k̂i

� �
� �Gy

01 r; r0ð Þ �G01 r; r0ð ÞF k̂s; k̂i

� �
Y r0ð Þ ð12Þ

in which the superscript y indicates the complex
conjugate of a dyad or a vector.

[10] Substitutions of equations (1) and (7) into equa-
tion (12) yield for nearly backscattering condition,

I
1ð Þ

L 	 PtG
2
0l

2q2d 27p ln 2 r2s
� ��1

N0 2 k
00

iz þ k
00

sz

� �n o�1

�
X
â

â F �k̂i; k̂i

� �			 			Y0

D E			 			2
� 1� exp �2 k

00

iz þ k
00

sz

� �
d

h in o
ð13Þ

where the approximation of rs 	 ri and k̂s 	 �k̂i have
been used. In equation (13), the summation over unit
vector â is taken over a complete set of polarizations
such as the ĥ and v̂ directions. When the initial
polarization is in the v̂ direction and the absorption is
negligible, equation (13) projected onto the v̂-polarized
component can be written in the form of

I
1ð Þ

L ¼ PtG
2
0l

2q2d 29p2 ln 2 r2s
� ��1

xbak d ð14Þ

Figure 2. Second-order ladder term. An incident field
EA and its identical conjugate field EB emit from
antenna T and scatter at points b and a successively in
the random medium, being received by antenna R.
(a) Diagram in which G11 is a Green function in the
medium. (b) Geometrical configuration.
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where the volumetric backscattering reflectivity xbak =
4p N0jFv̂v̂(�k̂i, k̂ i)j2 has been introduced. If the layer
thickness d is replaced with the longitudinal resolution
length ct/2, we can retrieve the radar equation for
volume scattering with a pulse duration of t. Hence the
first-order ladder term for a small scattering angle qs� 1�

has been proven to be equivalent to the radar equation as
expected.

2.2. Second-Order Ladder Term

[11] The second-order ladder term for bistatic radars
can be represented by the diagram in Figure 2a, and the
corresponding geometry is represented by Figure 2b. The
field EA and its identical conjugate field EB are
transmitted from the antenna T. These fields first scatter
at point b and, then at point a, eventually returning to the
receiving antenna R. Under the condition that the mean
free path of the medium is much larger than the
wavelength, which is almost always satisfied for hydro-
meteors, a Green function in the medium can be
approximated from a complete form of van Bladel [1961]

�G11 r; r0ð Þ 	 4pð Þ�1
r� r0j j�1

exp ik r� r0j j½ � �I2 ð15Þ

Substituting equations (1), (7), and (15) into the integral
form corresponding to the diagram in Figure 2a, the
second-order ladder term for the finite beam width can be
derived as shown in Appendix A1:

I
2ð Þ

L ¼ PtG
2
0l

2q2d 27p ln 2 r2s
� ��1

N2
0 2 k

00

iz þ k
00

sz

� �n o�1

�
Z 1

0

dh
Z 2p

0

dj
Z d

0

dz
h

1þ h2

� exp �ke
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
z

h i
exp �z2h2=4s2r

� �
�
X
â

â F k̂s; r̂
� �

F r̂; k̂i

� �			 			Y0

D E			 			2�

� exp �2k
00

izz
n o

� exp 2k
00

szz� 2 k
00

iz þ k
00

sz

� �
d

n oh i
þ â F k̂s; �r̂

� �
F �r̂; k̂i

� �			 			Y0

D E			 			2
� exp �2k

00

szz
n o

�exp 2k
00

izz� 2 k
00

iz þ k
00

sz

� �
d

n oh i�
ð16Þ

where h� tanq has been defined. The variables q and j are
polar coordinates for the directional variable r̂ that is
defined inside the argument of the scattering amplitude
matrix F. The other integral variable z � za � zb is the
relative coordinate in the direction of layer thickness (See
the details in Appendix A1). The second-order ladder term
corresponds to the conventional second-order scattering
derived by the radiative transfer theory.

2.3. Second-Order Cross Term

[12] The diagram of the second-order cross term is
depicted in Figure 3a. The direction of the conjugate
field is arbitrary. In this paper, the notation of the
direction of the fields will follow that of Kravtsov and
Saichev [1982]. In the geometry of Figure 3b, the field

Figure 3. Second-order cross term. An incident field
EA takes the same path as in Figure 2b, while the
conjugate field EB emits from antenna T and scatters at
points a and b successively, being received by antenna R.
(a) Diagram. (b) General scattering qs 6¼ 0. (c) Back-
scattering qs = 0, where EB takes the time reversal path of
EA.
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EA travels in the same path as that in Figure 2b, while the
conjugate field EB, starting from the transmitting antenna
T, scatters first at point a and, then at point b, eventually
returning to the receiving antenna R. Since the fields EA

and EB have different path lengths, random distributions
of points a and b will cause strong decorrelation,
generally giving negligible contribution to the measured
intensity. However for the backscattering measurement
(qs = 0) depicted in Figure 3c, the fields EA and EB have
the same path lengths, giving finite correlation that leads
to backscattering enhancement. The ray path of EB in
Figure 3c is referred to as the time reversal path of EA. As
the transmitting and receiving gains are assumed to be
symmetric in this study, the received fields EA and EB

have also the same magnitudes. Although this assump-
tion is not indispensable to obtain the backscattering
enhancement, it is assumed for the sake of simplicity in
calculation.
[13] The second-order cross term for the finite beam

width can be derived in a similar manner to the second-
order ladder term. The result is

I
2ð Þ

C ¼ PtG
2
0l

2q2d 27p ln 2 r2s
� ��1

N 2
0 k

00

iz þ k
00

sz

� ��1

�
Z 1

0

dh
Z 2p

0

dj
Z d

0

dz
h

1þ h2

� exp � ke
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
þ k

00

iz þ k
00

sz

n o
z

h i
� exp �z2h2=4s2r

� �
1� exp �2 k

00

iz þ k
00

sz

� �hn

� d � zð Þ
io

Re
X
â

â F k̂s; r̂
� �

F r̂; k̂i

� �			 			Y0

D E
*

("

� â F k̂s; �r̂
� �

F �r̂; k̂i

� �			 			Y0

D E)
exp i kdz þ tð Þz½ �

#

ð17Þ

in which the deviation vector kd from the backscattering
direction and the new variable t have been introduced on
the basis of work by Ishimaru and Tsang [1988]:

kd ¼ k k̂s þ k̂i

� �
� kdxx̂þ kdyŷþ kdzẑ ð18Þ

t � kdxh cosjþ kdyh sinj ð19Þ

Note that the second-order ladder term (equation (16))
and cross term (equation (17)) can be reduced to the
forms of Mandt et al. [1990] in the limit of sr ! 1.
However an advantage of the form of equation (17) is
that the decorrelation caused by increase in the value of
kd is explicitly represented through the term exp[i(kdz +
t)z]. Another advantage is that equation (17) is
represented in real valued form.

[14] Since Mandt et al. [1990] did not elaborate on the
relation between the ladder and cross terms in the second
order for the case of backscattering qs = 0, we shall
derive it. For the backscattering, the following conditions
are satisfied for equations (16) and (17):

k̂s ¼ �k̂i ð20Þ

k
00

iz ¼ k
00

sz ð21Þ

t ¼ kdz ¼ 0 ð22Þ

In general, a scattering amplitude matrix F satisfies the
Saxon’s reciprocal relation [Mishchenko, 1991; Saxon,
1955]:

F �n̂;�n̂0ð Þ ¼ QFt n̂0; n̂ð ÞQ ð23Þ

where the superscript t denotes matrix transpose, and the
matrix Q is defined as

Q ¼
1 0

0 �1

2
4

3
5 ð24Þ

Without losing generality, we can assume the initial
polarization:

Y0 � v̂ ¼
1

0

2
4

3
5 ð25Þ

Using equations (20) and (23) and the fact of hajAjbi =
hbjAyjai*, we can show

v̂ F k̂s; �r̂
� �

F �r̂; k̂i

� �			 			v̂D E
¼ v̂ F k̂s; r̂

� �
F r̂; k̂i

� �			 			v̂D E
ð26Þ

Inserting equations (21), (22), and (26) into equations (16)
and (17), we see for the copolarized component that the
cross term is equal to the ladder term:

I 2ð Þ
c COð Þ ¼ I

2ð Þ
L COð Þ ð27Þ

where CO stands for the copolarized component. On the
other hand, for the cross polarized component, it is
impossible to deduce a simple relation from equations (16)
and (17) unless additional symmetries exist in a system.
These results are in agreement with general formulas of
Mishchenko [1991, 1992].
[15] For the Mie scattering of spherical particles, the

matrix F(k̂s, r̂) F(r̂, k̂i) can be shown to have an

RS6015 KOBAYASHI ET AL.: BACKSCATTERING ENHANCEMENT FOR RADAR

6 of 16

RS6015



antisymmetric form for the backscattering condition (k̂i =
�k̂s) [Tazaki et al., 2000]:

F k̂s; r̂
� �

F r̂; k̂i

� �
¼

a cos 2jþ b a sin 2j

�a sin 2j a cos 2j� b

2
4

3
5

ð28Þ

in which

a � f11 q� qsð Þ f11 qi � qð Þ þ f22 q� qsð Þ f22 qi � qð Þ½ �=2
ð29Þ

b � f11 q� qsð Þ f11 qi � qð Þ � f22 q� qsð Þ f22 qi � qð Þ½ �=2
ð30Þ

and f11(q) and f22(q) are the components of Mie scattering
amplitude matrix. Alternatively, we can write equation
(28) as

ĥ F k̂s; r̂
� �

F r̂; k̂i

� �			 			v̂D E
¼ � v̂ F k̂s; r̂

� �
F r̂; k̂i

� �			 			ĥD E
ð31Þ

Using equations (20), (23), and (31), we can show for the
cross polarized component scattered from v̂ to ĥ:

ĥ F k̂s; r̂
� �

F r̂; k̂i

� �			 			v̂D E
¼ ĥ F k̂s; �r̂

� �
F �r̂; k̂i

� �			 			v̂D E
ð32Þ

Inserting equations (21), (22), and (32) into equations
(16) and (17), we can derive the equality between the
ladder and cross terms in cross polarization for spherical
particles:

I 2ð Þ
c CXð Þ ¼ I

2ð Þ
L CXð Þ ð33Þ

where CX stands for the cross polarized component. A
recent numerical simulation by Oguchi and Ihara [2005]
further reported that for cross polarization, the equality
Ccx = Lcx is satisfied only to the second order.

3. Results and Discussion

[16] Multiple scatterings including backscattering
enhancement can be considered to effectively increase
radar reflectivity. When hydrometeors consist of spher-
ical particles, the first-order ladder term IL

(1) has only the
copolarized component, that is, IL

(1) = IL
(1)(CO). Further-

more IL
(1) is almost constant in the vicinity of qs = 0 (qs <

0.3�), within which the backscattering enhancement
occurs. For this reason, the intensity of a multiple-
scattering term will be normalized by IL

(1) to be converted

to an effective reflectivity in the rest of this paper. For
instance, the second-order ladder reflectivity in copolar-
ized component L2

co will mean IL
(2)(CO)/IL

(1).
[17] The reflectivities of the second-order terms for a

finite beam width can be numerically calculated through
equations (16) and (17). In Figure 4, the reflectivities of
the ladder term L2

co and the cross term C2
co in

copolarization (solid lines), and those of the ladder term
L2
cx and the cross term C2

cx in cross polarization (dashed
lines) are plotted as a function of the bistatic scattering
angle qs. Here qs is taken in the plane parallel to the initial
polarization. The results are presented for the 3 dB
aperture angle qd = 0.3�, and the range rs = 10 km,
corresponding to the footprint radius sr = 22.2 m.
Radiation frequency is set at 95 GHz. The random
medium is a single layer with thickness d = 100 m,
constituted of spherical water drops with particle number
densityN0 = 5� 103m�3 and uniform diameterD = 1mm.
These parameters result in the single-particle albedo of
0.53 (i.e., the total scattering cross section divided by the
total extinction cross section), the mean free path l0 �

Figure 4. Reflectivities normalized by the single-
scattering intensity versus the scattering angle qs taken
in the plane parallel to the initial polarization. The
reflectivities of the ladder term L2

co and the cross term C2
co

in copolarization are represented by solid lines, and those
of the ladder term L2

cx and the cross term C2
cx in cross

polarization are represented by dashed lines. Spherical
water particles of diameter D = 1 mm, particle number
density N0 = 5 � 103 m�3, and layer thickness d = 100 m
are used, which give the mean free path l0 = 77.2 m, the
optical thickness td = 1.30, and the normalized footprint
radius sr/l0 = 0.288.
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ke
�1 = 77.2 m, the optical thickness td � ked = 1.30, and

the normalized footprint radius sr/l0 = 0.288. On the
basis of a scalar theory including all the ladder and cross
terms [Ishimaru and Tsang, 1988; Tsang and Kong,
2001], truncation at the second order can be considered
valid in this range of albedo and optical thickness.
Unless specified otherwise, theses parameters will be
used in the remainder of this section.
[18] Figure 4 shows that the ladder terms L2

co (solid)
and L2

cx (dashed) are practically constant for qs < 0.1� for
the above parameters. The cross terms C2 are equal to the
ladder terms L2 at qs = 0 in both polarizations. These
results are theoretically expected from equations (27) and
(33). As qs increases, the cross terms rapidly decreases
because of the term exp[i(kdz + t)z] in equation (17), as
described in section 2.3. This rapid reduction in
reflectivity is more evident for the cross polarization
than for the copolarization. It is noted that the constancy
of L2 and the decaying behavior of C2 in both
polarizations in Figure 4 will hold even when changing
either the beam width qd or the range rs, correspondingly
changing the footprint radius sr. Behaviors of L2 and C2

as functions of sr, including the relation to the plane
wave theory, will be studied for fixed values of qs in later
figures.
[19] From an operational perspective, it is useful to

compare the copolarized return intensity including the
cross term, 1 + L2

co + C2
co, to the conventional return

intensity 1 + L2
co. These values were calculated in

Figure 5 for two conditions referred to as parallel and
orthogonal angular displacements respectively. Suppose
that the scattering plane is parallel to the v̂ direction. In
the parallel angular displacement, the initial polarization
Y0 is chosen in the v̂ direction, while in the orthogonal
one, Y0 is in the direction ĥ. In Figure 5a, the values of
1 + L2

co(dotted line) for these two conditions coincide,
while the values of 1 + L2

co + C2
co(solid lines) for the two

conditions coincide only at qs = 0. As qs increases, the
values of the parallel angular displacement show slower
decay than those of the orthogonal angular displacement,
indicating that the C2

co term is anisotropic in copolariza-
tion. Since there is no return of the first-order scattering
in cross polarization, that is, IL

(1)(CX) = 0, the total cross
polarized return is represented by L2

cx or L2
cx + C2

cx, which
is equal to linear depolarization ratio (LDR). These
values are plotted in Figure 5b, in which not only the
term L2

cx but also the term L2
cx + C2

cx coincide to each
other between the parallel and vertical angular displace-
ments, providing no spatial anisotropy. The results of the
spatial anisotropy near the backscattering direction,
shown in Figures 5a and 5b, are in agreement with the
works of van Albada and Lagendijk [1987] and van
Albada et al. [1987], who first attributed the anisotropy
to the vector property of electromagnetic wave through
computer simulation without theoretical confirmation.

Figure 5. Normalized reflectivities summed from the
first- to second-order terms as functions of the scattering
angle qs. Here qs is taken in one of two planes that are
parallel and orthogonal to the initial polarization, referred
to as parallel and orthogonal angular displacements,
respectively. The same parameters as in Figure 4 are
used. A typical displacement angle qs = 0.0025� for
spaceborne radars is marked by the vertical dash-dotted
lines. (a) Copolarization. The parallel and orthogonal
angular displacements show spatial anisotropy for 1 +
L2
co + C2

co (solid lines) but not for 1 + L2
co (dash-dotted

line). (b) Cross polarization. The parallel and orthogonal
angular displacements show no spatial anisotropy for
L2
cx + C2

cx.
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The features of this spatial anisotropy, including its
origin, are derived in Appendix A2. Regardless of the
angular displacements, the backscattering enhancements
appear with angular widths of the order of 2pke/k 	

0.002�, which is in agreement with the previous plane
wave theories [Barbanenkov et al., 1991; de Wolf, 1971;
Ishimaru, 1991; Kuzmin et al., 1992; Tsang and Kong,
2001; van Albada and Lagendijk, 1987] and plane wave
experiments [Akkermans et al., 1986; Kuga and
Ishimaru, 1984; van Albada et al., 1987; Wolf and
Maret, 1985]. The spatial anisotropy of reflectivity in
remote sensing can thus be summarized as follows. As
long as spherical particles are observed with ground-
based monostatic radars, the anisotropy of reflectivity in
copolarization does not appear because of its scattering
angle qs = 0. For bistatic radars, including spaceborne
monostatic radars with qs 	 0.0025�, we must consider
this effect. For simplicity of discussion in the rest of
paper, only the parallel angular displacement will be
considered.
[20] The dependence of multiple-scattering reflectiv-

ities on footprint radius sr is illustrated in Figure 6. The
terms 1 + L2

co + C2
co, 1 + L2

co in copolarization (solid
lines), and the terms L2

cx + C2
cx and L2

cx in cross
polarizations (dashed lines) are plotted as a function of
sr/l0 in Figure 6a for the backscattering angle, that is, qs =
0, and in Figure 6b for qs = 0.0025�. The value sr/l0 means
that the footprint radius sr is normalized by the mean free
path l0 = 77.2 m. Note that neither the 3 dB aperture angle
qd nor the range rs are defined explicitly, since they are
interrelated to sr in equation (2). In Figure 6, calculation is
terminated at sr/l0 = 0.064, that is, sr = 5 m, because in
such a small footprint radius, the numerical integral in
equation (17) does not converge with good accuracy
for qs = 0.0025�. Above sr/l0 	 2.5, all the
reflectivities in Figures 6a and 6b can be regarded as
nearly constant, asymptotically approaching to the
values that the plane wave theory [Mandt et al.,
1990] predicts. The return intensity with only the
ladder terms, 1 + L2

co (bottom solid line) and L2
cx

(bottom dashed line) in Figure 6b, are identical to
those in Figure 6a, while the return intensity including
the cross terms, 1 + L2

co + C2
co (top solid line) and L2

cx + C2
cx

(top dashed line) in Figure 6b, come to lower values than
those of Figure 6a because of reduction of backscattering
enhancement. For instance, choosing the same value of
sr/l0 = 0.288 as taken for Figure 5, the readings of 1 +
L2
co +C2

co and L2
cx +C2

cx in Figure 6a are 1.34 and�15.6 dB,
corresponding to the values at qs = 0� in Figures 5a and 5b,
respectively. Those readings at sr/l0 = 0.288 in Figure 6b
reduce to 1.16 and�17.1 dB, corresponding the values at
qs = 0.0025� in Figures 5a and 5b, respectively.
[21] Since the normalized reflectivity of the first-order

term is ever defined as unity for any sr/l0, working as a
constant bias, it is reasonable to study the effect of only
the second-order terms. Figure 7 show the calculated
values of L2

co + C2
co and L2

cx + C2
cx with a solid and a

dashed line respectively. The monostatic radar is our
main concern so that only the backscattering qs = 0 will

Figure 6. Normalized reflectivities as functions of the
normalized footprint radius sr/l0. Solid and dashed lines
represent the reflectivities in copolarization and cross
polarization, respectively. The same parameters as in
Figure 4 are used. Note that sr/l0 � 1 corresponds to the
plane wave theory. (a) Backscattering qs = 0. (b)
Biscattering in a spaceborne radar with qs = 0.0025�.
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be considered hereinafter. In Figure 7, both polarizations
show rapid reductions in the region sr/l0 < 1, while they
asymptotically approach to the values of the plane wave
theory as sr/l0 increases, as already seen in Figure 6. It is
noted that for qs = 0, the values of equations (13), (16),
and (17) can be shown to be independent of the particle
number density N0, when the layer thickness d and the
footprint radius sr are normalized to the mean free path
l0. In this sense, we can alternatively interpret the
hydrometeor parameters in Figure 7 as the two
parameters defined by the particle diameter D = 1 mm
and the optical thickness of layer td = d/l0 = 1.30
regardless of the values of N0 and d. For ease of readers’
reference, the mean free path l0 is plotted for D = 1 mm
as a function of N0 in Figure 8.
[22] In Figure 9, the terms L2

co + C2
co (solid lines) and

L2
cx + C2

cx (dashed lines) are plotted as a function of
optical thickness td = d/l0 for several values of
normalized footprint radius sr/l0. Here only the
frequency of 95 GHz and the particle diameter D =
1 mm are fixed. Since the mean free path l0 is

uniquely defined for a given particle density N0, the
value of td should be considered to change by varying
the physical layer thickness d. In both polarizations,
the reflectivities become less sensitive to increments in
td, as the parameter sr/l0 decreases. This is conspic-
uous for the cross polarization, in which the multiple-
scattering amplitude factors such as F(k̂s, r̂) F(r̂, k̂i)
with r̂ = (q, j) have high values around q = 90� for
nearly Rayleigh scattering regime. Hence the second-
order scattering in the cross polarization is not so
sensitive to increment in td that is along the direction
of q = 0 and 180�, but sensitive to increment in sr/l0
that is along the direction of q= 90�. In fact, Figures 7 and 9
show that for a fixed td, as sr/l0 increases, the
corresponding increment in the reflectivities of the cross
polarization is larger than that of the copolarization.
[23] Using Figure 9, we can determine the reduction

factor from the plane wave theory (i.e., sr/l0 =1) for the
particle diameter D = 1 mm, and given a footprint radius
sr, a layer thickness d, and a particle number density No.
Figure 9 also indicates that the plane wave theory can be
applied to a smaller value of sr/l0, as the optical
thickness td decreases. For example, at a large optical
thickness td = 4.0, the values of L2

co + C2
co (Solid lines)

are �1.89 dB and �2.39 dB for sr/l0 = 1 and sr/l0 = 1
respectively. These values reduce to �11.49 dB and
�11.58 dB respectively at a small optical thickness td =
0.05. Hence the difference in L2

co + C2
co between sr/l0 =

1 and sr/l0 = 1 is 0.50 dB at td = 4, while it becomes
only 0.09 dB at td = 0.05. It means that the plane wave
theory can be approximately applied for the footprint
radius sr/l0 = 1 at the small optical thickness td = 0.05.

Figure 7. Reflectivity L2
co + C2

co in copolarization (solid
line) and the reflectivity L2

cx + C2
cx in cross polarization

(dashed line) as functions of the normalized footprint
radius sr/l0 for the backscattering qs = 0. The same
parameters as in Figure 4 are used. Note that only for qs =
0, we can alternatively interpret the hydrometeor
parameters as the two parameters defined by particle
diameter D = 1 mm and the optical thickness td = 1.30
regardless of particle number density N0 and layer
thickness d. In sr/l0 < 1, the reflectivities reduce to be far
from the values predicted by the plane wave theory
represented by sr/l0 � 1.

Figure 8. Mean free path l0 versus particle number
density N0 for spherical water of diameter D = 1 mm.
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[24] Throughout the paper, hydrometeor particles have
been assumed to be stationary in air. If the particles move
around, the phase coherence between the two time
reversal paths in the cross term of Figure 3 will break
down, resulting in decorrelation. This problem was
studied by Akkermans et al. [1988] and Golubentsev
[1984] using time-dependent diffusion approximations in
scalar. Although consistent derivation requires a time-
dependent Green function, we can roughly estimate the
limit of the results in the present paper. Suppose that v is
a dominant particle velocity on average. The travel time
of the radar wave in the process of the second-order
scattering (Figure 3c) can be written T 	 l0/c with the
velocity of light c and the mean free path l0. During time
T, two scatterers move over a total distance L 	 2 v l0/c.
Akkermans et al. [1988] proved that the backscattering
enhancement is observable, as long as the condition L �
l is satisfied, which can be rewritten in the form of

l0 m½ � � 4:5� 107 v m=sec½ �f GHz½ �ð Þ�1 ð34Þ

For an extremely fast wind v 	 100 m/sec with f =
95 GHz, equation (34) gives lo � 4800 m. This

condition is generally satisfied when the multiple
scattering is significant in hydrometeors.

4. Conclusions

[25] In this paper, a vector theory, including up to the
second-order scattering, has been studied for continuous
wave incidence as a time-independent theory. A single
layer of hydrometeors has been assumed to be composed
of spherical water drops of diameter D with a uniform
density N0. A Gaussian antenna pattern along with
spherical wave has been introduced to take a finite
footprint radius into account. For a given footprint radius
and the mean free path in a random medium, the
multiple-scattering reflectivity becomes smaller than the
value predicted by the plane wave theory. This reduction
becomes more significant as the optical thickness of
hydrometeors increases, its exact value depending on the
ratio of mean free path to radar footprint radius as shown
in Figure 9 for the case of D = 1 mm. Although the
dependence on the particle density N0 does not appear
explicitly in Figure 9, it is implicitly included in the
mean free path l0 as shown in Figure 8.
[26] Since the theory in this paper is derived as a time-

independent theory, it can be applied only to the station-
ary process such as CW radars (not FM-CW radars). To
apply for pulsed radars, the theory must be extended to a
time-dependent theory. For a single layer of hydrome-
teors, an analytical solution of the time-dependent radi-
ative transfer theory was derived for the plane wave
incidence by Ito et al. [1995], based on generalized
spherical harmonics expansions [Oguchi, 1980; Ito and
Oguchi, 1987, 1989]. However their approach does not
include the effects of the second-order cross term
(backscattering enhancement) nor the finite beam width.
A promising approach is therefore to combine the
formalism of Ito et al. [1995] with that of the present
paper. To develop this algorithm, raindrops are more
tractable than ice particles. Since the shape of raindrops
is close to sphere, large LDR values, such as measured in
the Ka band range by Ito et al. [1995] and Iguchi et al.
[1992], can be attributed to multiple-scattering effect
rather than to nonspherical particle effect. This issue will
be studied in the future. On the other hand, when the
vertical range resolution lres(= cT/2) is larger than the
mean free path lfree, that is, lres > lfree, the theory of this
paper can be used to estimate the amount of second-order
scattering near the top surface of hydrometeors as
discussed in section A3.
[27] In addition to developing a time-dependent algo-

rithm, it is also necessary to include effects of a generic
drop size distribution (DSD), and nonspherical particles.
Since the former effect breaks the high symmetrical forms
of the scattering amplitude matrices in equations (16) and
(17) because of the lack of symmetry for particle exchange,

Figure 9. Reflectivity L2
co + C2

co in copolarization (solid
lines) and the reflectivity L2

cx + C2
cx in cross polarization

(dashed lines) as functions of the optical thickness td for
the backscattering qs = 0. Hydrometeor diameter is set at
D = 1 mm. Particle number density N0 is set at an
arbitrary value. The parameters of footprint radius sr/l0
are set at (top to bottom) 1, 1, 0.5, 0.2, and 0.1. The
differences of finite footprint radius (sr/l0 = 1 � 0.1)
from the plane wave theory (sr/l0 = 1) reduce as td
decreases. See color version of this figure in the HTML.
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a new formalism must be developed. The latter effect
is also important especially for ice particles in clouds,
which often are represented as needles (columns) and
plates. The nonsphericity of these particles will intro-
duce spatial anisotropy both in the scattering amplitude
matrix and in the propagation Green function. Once
these two effects are introduced into the formalism, the
second-order scatterings for ice particles can be easily
calculated, which is of main interest for W band
weather radars.

Appendix A: Details of Derivation

A1. Derivation of the Second-Order Ladder Term

[28] The second-order ladder term can be derived by
substituting equations (1), (7), and (15) into the diagram
of Figure 2a. In the course of calculation, the center mass
and relative coordinates are introduced in the same
manner as the previous works [Mandt et al., 1990;
Ishimaru and Tsang, 1988; Tsang and Kong, 2001]:

r? ¼ ra? � rb? ðA1Þ

rce? ¼ ra? þ rb?ð Þ=2 ðA2Þ

in which ra? and rb? denote the transverse components
of position vectors ra and rb. Theses transformations lead
the second-order ladder term to the form of

I
2ð Þ

L ¼ pPtG
2
0N

2
0s

2
r= 4 k2rs
� � Z 0

�d

dza

Z 0

�d

dzb

� exp 2k
00

izzb þ 2k
00

szza

h i
J za; zbð Þ ðA3Þ

In equation (A3), the function J(za, zb) can be represented
in the following form along with the transformations of

x? ¼ za � zbð Þ tan q cosj ðA4Þ

y? ¼ za � zbð Þ tan q sinj ðA5Þ

For za > zb

J za; zbð Þ ¼
Z p=2

0

dq tan q
Z 2p

0

dj

� exp � za � zbð Þ2 tan2 q=4s2r
h i

� exp �ke za � zbð Þ sec q½ �

�
X
â

â F k̂s; r̂
� �

F r̂; k̂i

� �			 			Y0

D E			 			2 ðA6Þ

while for za < zb

J za; zbð Þ ¼
Z p=2

0

dq tan q
Z 2p

0

dj

� exp � za � zbð Þ2 tan2 q=4s2r
h i

� exp ke za � zbð Þ sec q½ �

�
X
â

â F k̂s; �r̂
� �

F �r̂; k̂i

� �			 			Y0

D E			 			2 ðA7Þ

Up to this point, there is no substantial difference from
Mandt et al. [1990]. Since we cannot calculate
analytically the integrals over za and zb for the case of
finite beam width as was done for the plane wave case,
further simplification is to be introduced through the
following transformations:

z ¼ za � zb ðA8Þ

z0 ¼ za þ zbð Þ=2 ðA9Þ

Noting the relations satisfied for a general function
g(za, zb):Z 0

�d

dza

Z 0

�d

dzbg za; zbð Þ ¼
Z d

0

dz
Z �z=2

�dþz=2
dz0g z; z0ð Þ for za > zbZ 0

�d

dza

Z 0

�d

dzbg za; zbð Þ ¼
Z d

0

dz
Z �z=2

�dþz=2
dz0g �z; z0ð Þ for za < zb

8>>><
>>>:

ðA10Þ
we obtain the form of

I
2ð Þ

L ¼ PtG
2
0l

2q2d 27p ln 2 r2s
� ��1

N2
0 2 k

00

iz þ k
00

sz

� �n o�1

�
Z p=2

0

dq tan q
Z 2p

0

dj
Z d

0

dz

� exp �kez sec q½ � exp �z2 tan q=4s2r
� �

�
X
â

â F k̂s; r̂
� �

F r̂; k̂i

� �			 			Y0

D E			 			2�

� exp �2k
00

izz
n o

� expf2k00

szz� 2 k
00

iz þ k
00

sz

� �
d

h i
þ â F k̂s; �r̂

� �
F �r̂; k̂i

� �			 			Y0

D E			 			2
� exp �2k

00

szz
n o

� expf2k00

izz� 2 k
00

iz þ k
00

sz

� �
d

h i�
ðA11Þ

Finally conversion of the integral variable q to h = tan q
leads to equation (16).

A2. Spatial Anisotropy of Ladder and Cross Terms

[29] Suppose that a scattering plane is parallel to the
polarization v̂. When the initial polarization Y0 is
parallel(orthogonal) to v̂, this condition is referred to as
parallel(orthogonal) angular displacement. Difference
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between the parallel and orthogonal angular displace-
ments appear only through the terms hâjF(k̂s, ±r̂) F(±r̂,
k̂i)jY0i in equations (16) and (17). Throughout this
section, it is noted that equation (28) is approximately
satisfied with high accuracy for jqsj 4 0.1�.
A2.1. Proof of L2

co(v̂v̂) = L2
co(ĥĥ)

[30] Since equation (28) is well satisfied for jqsj 4 0.1�,

v̂ F k̂s; r̂
� �

F r̂; k̂i

� �			 			v̂D E			 			2¼ 2�1 aj j2 þ bj j2

þ 2�1 aj j2 cos 4jþ ab*þ ba*ð Þ cos 2j ðA12Þ

ĥ F k̂s; r̂
� �

F r̂; k̂i

� �			 			ĥD E			 			2¼ 2�1 aj j2 þ bj j2

þ 2�1 aj j2 cos 4j� ab*þ ba*ð Þ cos 2j ðA13Þ

Using equations (A12) and (A13), we can showZ
dj v̂ F k̂s; r̂

� �
F r̂; k̂i

� �			 			v̂D E			 			2
¼

Z
dj ĥ F k̂s; r̂

� �
F r̂; k̂i

� �			 			ĥD E			 			2 ðA14Þ

which is also satisfied for �r̂. Noting that the integral
over j in equation (16) concerns only to the terms
hâjF(k̂s, ±r̂) F(±r̂, k̂i)jY0i, the substitution of equation
(A14) and its counterpart for �r̂ into equation (16) yields

I
2ð Þ

L v̂v̂ð Þ ¼ I
2ð Þ

L ĥĥ
� �

ðA15Þ

For the nearly backscattering jqsj 4 0.1�, the following
relation is approximately satisfied for the spherical
particle with high accuracy:

I
1ð Þ

L � I
1ð Þ

L v̂v̂ð Þ 	 I
1ð Þ

L ĥĥ
� �

ðA16Þ

We divide equation (A15) by equation (A16) to obtain

Lco2 v̂v̂ð Þ ¼ Lco2 ĥĥ
� �

ðA17Þ

Equation (A17) means that the reflectivity of the second-
order ladder term in copolarization from v̂ to v̂ is equal to
that from ĥ to ĥ as shown by the dash-dotted line in
Figure 5a.

A2.2. Spatial Anisotropy of the Cross Term
in Copolarized Return

[31] Since equation (28) is well satisfied for jqsj 4
0.1�, we derive

v̂ F k̂s; r̂
� �

F r̂; k̂i

� �			 			v̂D E
* v̂ F k̂s; �r̂

� �
F �r̂; k̂i

� �			 			v̂D E
¼ 2�1a*a0 þ b*b0 þ 2�1a*a0 cos 4j
þ a*b0 þ b*a0ð Þ cos 2j ðA18Þ

in which a0 and b0 correspond to the values a and b in
equations (29) and (30) by replacing q with p � q. In the
same manner,

ĥ F k̂s; r̂
� �

F r̂; k̂i

� �			 			ĥD E
* ĥ F k̂s; �r̂

� �
F �r̂; k̂i

� �			 			ĥD E
¼ 2�1a*a0 þ b*b0 þ 2�1a*a0 cos 4j

� a*b0 þ b*a0ð Þ cos 2j ðA19Þ

Substituting equation (A18) and (A19) along with
equation (22) into the integral over j in equation (17),
we obtain for the qs = 0:Z

djRe v̂ F k̂s; r̂
� �

F r̂; k̂i

� �			 			v̂D E
*

n
� v̂ F k̂s; �r̂

� �
F �r̂; k̂i

� �			 			v̂D E
exp i kdz þ tð Þz½ �

o
¼

Z
djRe ĥ F k̂s; r̂

� �
F r̂; k̂i

� �			 			ĥD E
*

n
� ĥ F k̂s; �r̂

� �
F �r̂; k̂i

� �			 			ĥD E
exp i kdz þ tð Þz½ �

o
ðA20Þ

which leads to

I
2ð Þ

C v̂v̂ð Þ ¼ I
2ð Þ

C ĥĥ
� �

ðA21Þ

Dividing both sides by equation (A16), we obtain

Cco
2 v̂v̂ð Þ ¼ Cco

2 ĥĥ
� �

ðA22Þ

Equation (A22) is satisfied only for the backscattering
direction qs = 0 because of the lack of the oscillation term
exp[i(kdz + t)z]. For qs 6¼ 0, the term exp[i(kdz + t)z] gives
another dependence on the integral variable j, and
equation (A22) is no longer satisfied. This is the origin of
the spatial anisotropy of the backscattering enhancement
in copolarization as shown by the two solid lines in
Figure 5a.

A2.3. Proof of L2
cx(v̂ĥ) = L2

cx(ĥv̂) and C2
cx(v̂ĥ) = C2

cx(ĥv̂)

[32] These properties can be easily derived for the nearly
backscattering jqsj4 0.1� by substituting equation (31)
and its counterpart for �r̂ into equation (17), followed by
dividing by equation (A16). The equalities/isotropies
L2
cx(v̂ĥ) = L2

cx(ĥv̂), and C2
cx(v̂ĥ) = C2

cx(ĥv̂) are represented
in Figure 5b.
A3. Special Condition to Apply the
Time-Independent Theory to Pulsed Radars

[33] Although the returned signals due to the second-
order scattering represented by equations (16) and (17)
have been derived as time independent process such as
CW radars (not FM-CW radars), it is worth comparing
the scheme represented by these equations with that of
pulsed radars. Figure A1 is a bounce diagram [Bringi
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and Chandrasekar, 2001; Freeman, 1996]. Since this
diagram is a projection of four dimensional spaces into
two dimensional spaces of z coordinate (range) and time,
we cannot fully represent information on multiple
scattering, but it is still useful. In the diagram, the speed
of light is set at unity, so that the time and z coordinate
are plotted in the same scale. Suppose that a uniform
random medium exists between the ranges du and db, and
that the leading and trailing edges of a pulse are
transmitted at time 0 and T respectively. Then the signal
representing the range d3 is received at time R3,
including the first-order scattering contribution from
the line Q3U3. When considering the second-order
scattering process, a ray scattered first at any point in
the dotted region has possibility to be secondly scattered
at a certain point on the line Q3S3, eventually being
received at time R3. For instance, if an incident ray
transmitted at time ta is scattered at point ‘‘a,’’ a second-
time scattering can occur at a certain point ‘‘A’’ on the
line a3S3, as long as the three dimensional distance
between points ‘‘a’’ and ‘‘A’’ is properly chosen. It is
therefore seen that even for pulsed radars, multiple-
scattering effect contaminates into the signal of a given
range. However, the contribution of second-order
scattering comes only from the dotted region. On the
other hand, the time-independent theory, referred to as
CW radars, includes the contribution of the second-order
scattering from both the solid gray and dotted regions,
and at the same time, the first-order scattering comes

from all the points on the line B3S3. Hence it is
challenging to generalize the comparison of the effects of
second order scattering between these two schemes.
However in the case of lres > lfree, where lres and lfree are
the range resolution (cT/2) and the mean free path of
medium respectively, the amounts of second order
scattering in both the pulsed and CW radars can be
considered roughly equal near the top surface of
hydrometeors. This will be explained by using the
bounce diagram, in which the dash-dotted line ‘‘eh’’ is
drawn with U3f = Q3h = lfree. Then the contribution of the
second-order scattering for pulsed radars can be
considered to come roughly from the region
‘‘U3egQ3,’’ while for CW radars applied only between
d2 and d3 (i.e., the integral limit ‘‘d’’ in equations (16)
and (17) is replaced with lres = d3 � d2), the contribution
comes from the region ‘‘U3fhQ3.’’ Among these regions,
the triangle ‘‘efU3’’ for pulsed radars contributes to more
amount of second-order scattering onto the line ‘‘Q3V3’’
than the triangle ‘‘ghQ3’’ for CW radars does, because
the larger range suffers more absorption. A small portion
of the shared region ‘‘U3fgQ3’’ may also give slight
contribution of second-order scattering to the line
‘‘U3V3’’ for pulsed radars. Furthermore as the range
increases, the second-order contributions from regions
other than ‘‘U3egQ3’’ for pulsed radars will be no longer
negligible. As seen from the bounce diagram, these
difference-causing effects will be reduced near the top
surface. It is thus seen that the second-order scattering

Figure A1. Bounce diagram. The speed of light c is set at unity. A uniform random medium
exists from the range du to db. The leading and trailing edges of pulses are transmitted at times 0
and T, respectively.
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calculated from the time-independent theory, applied to
the ranges d2 and d3, is a good estimation for pulsed
radars under the condition of lres > lfree, only if the range
d2 � d3 is located near the top surface, that is, for the
range d0 � d1.
[34] On the contrary, for lres < lfree, especially for 2lres <

lfree, more contribution of the second-order scattering
comes from the dotted region ‘‘U3Q2SsSt’’ for pulsed
radars, while for CW radars, from the solid gray region
‘‘Q2d2d3Q3.’’ In addition, for pulsed radars, the con-
tribution from the region ‘‘U3Q2Q3’’ to the line U3S3 will
increase. It is again difficult to evaluate the amounts of
these second-order scattering for pulsed radars through
the formalism of this paper, and the time-dependent
algorithm is needed.
[35] Summarizing the case of lres > lfree, the formalism

of this paper can roughly estimate the amount of second-
order scattering of pulsed radars in ranges near the top
surface. Our preliminary calculation showed that the
mean free path lfree is between 300 and 500 meter for
rains of 10 mm/hr, depending on drop size distributions.
Since the range resolution of the CloudSat and EarthCare
missions is 500 meter, the above condition is weakly
satisfied.
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